2024

315. Autophobic polydimethylsiloxane nanodroplets enable abrasion-tolerant omniphobic surfaces
Khatir, B., Serles, P., Wen, T., Vuong, T. V., Shayesteh, A., Au, S., Sinton, D., Master, E. R., Filleter, T., Golovin, K., Chemical Engineering Journal 157718 (2024).
314. Reactive capture of CO2 via amino acid
Xiao, Y. C., Sun, S. S., Zhao, Y., Miao, R. K., Fan, M., Lee, G., Chen, Y., Gabardo, C. M., Yu, Y., Qiu, C., Guo, Z., Wang, X., Papangelakis, P., Huang, J. E., Li, F., O’Brien, C. P., Kim, J., Han, K., Corbett, P. J., Howe, J. Y., Sargent, E. H., Sinton, D., Nature Communications 15, 1, 7849 (2024).

313. Scaling CO2 Electrolyzer Cell Area from Bench to Pilot
Nelson, V. E., O’Brien, C. P., Edwards, J. P., Liu, S., Gabardo, C. M., Sargent, E. H., Sinton, D., ACS Applied Materials & Interfaces 16, 38, 50818–50825 (2024).

312. Acid-Stable Cu Cluster Precatalysts Enable High Energy and Carbon Efficiency in CO2 Electroreduction
Kim, D., Park, S., Lee, J., Chen, Y., Li, F., Kim, J., Bai, Y., Huang, J. E., Liu, S., Jung, E. D., Lee, B.-H., Papangelakis, P., Ni, W., Alkayyali, T., Miao, R. K., Li, P., Liang, Y., Shayesteh Zeraati, A., Dorakhan, R., Meira, D. M., Chen, Y., Sinton, D., Zhong, M., Sargent, E. H., Journal of the American Chemical Society 146, 40, 27701–27712 (2024).

311. Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment
Shayesteh Zeraati, A., Li, F., Alkayyali, T., Dorakhan, R., Shirzadi, E., Arabyarmohammadi, F., O’Brien, C. P., Gabardo, C. M., Kong, J., Ozden, A., Zargartalebi, M., Zhao, Y., Fan, L., Papangelakis, P., Kim, D., Park, S., Miao, R. K., Edwards, J. P., Young, D., Ip, A. H., Sargent, E. H., Sinton, D., Nature Synthesis 1–9 (2024).
310. Biofuel processing in a closed-loop geothermal system
Darzi, A., Zargartalebi, M., Kazemi, A., Roostaie, M., Saber, S., Riordon, J., Sun, S., Zatonski, V., Holmes, M., Sinton, D., Applied Energy 376, 124188 (2024).

309. Direct air capture of CO2 via cyclic viologen electrocatalysis
Liu, S., Zhang, J., Li, F., Edwards, J. P., Xiao, Y. C., Kim, D., Papangelakis, P., Kim, J., Elder, D., De Luna, P., Fan, M., Lee, G., Miao, R. K., Ghosh, T., Yan, Y., Chen, Y., Zhao, Y., Guo, Z., Tian, C., Li, P., Xu, Y., Sargent, E. H., Sinton, D., Energy & Environmental Science 17, 3, 1266-1278 (2024).

308. Differential microthermometry enables high-throughput calorimetry
Kazemi, A., Zargartalebi, M., Sinton, D., Energy & Environmental Science 17, 2, 813-823 (2024).

307. CO2 Electrolyzers
O’Brien, C. P., Miao, R. K., Shayesteh Zeraati, A., Lee, G., Sargent, E. H., Sinton, D., Chemical Reviews 124, 7, 3648-3693 (2024).

306. Pathways to reduce the energy cost of carbon monoxide electroreduction to ethylene
Alkayyali, T., Zargartalebi, M., Ozden, A., Arabyarmohammadi, F., Dorakhan, R., Edwards, J. P., Li, F., Shayesteh Zeraati, A., Fan, M., Bazylak, A., Sargent, E. H., Sinton, D., Joule 8, 5, 1478-1500 (2024).

305. Geothermal reforming crude glycerol to hydrogen
Sun, S. S., Darzi, A., Zargartalebi, M., Guo, Y., Sinton, D., Energy Conversion and Management 302, 118135 (2024).

304. Bimetallic Metal Sites in Metal-Organic Frameworks Facilitate the Production of 1-Butene from Electrosynthesized Ethylene
Lee, M. G., Kandambeth, S., Li, X.-Y., Shekhah, O., Ozden, A., Wicks, J., Ou, P., Wang, S., Dorakhan, R., Park, S., Bhatt, P. M., Kale, V. S., Sinton, D., Eddaoudi, M., Sargent, E. H., Journal of the American Chemical Society 146, 20, 14267–14277 (2024).

303. Carbon-Efficient CO2 Electrolysis to Ethylene with Nanoporous Hydrophobic Copper
Papangelakis, P., Shayesteh Zeraati, A., O’Brien, C. P., Bonnenfant, L., Dorakhan, R., Gabardo, C. M., Young, D., Kong, J., Azimi Dijvejin, Z., Najarian, A. M., Park, S., Shin, H., Miao, R. K., Ip, A., Golovin, K., Sargent, E. H., Sinton, D., Advanced Energy Materials 14, 2400763 (2024).

302. Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity
Shirzadi, E., Jin, Q., Shayesteh Zeraati, A., Dorakhan, R., Goncalves, T. J., Abed, J., Lee, B.-H., Rasouli, A. S., Wicks, J., Zhang, J., Ou, P., Boureau, V., Park, S., Ni, W., Lee, G., Tian, C., Meira, D. M., Sinton, D., Siahrostami, S., Sargent, E. H., Nature Communications 15, 1, 2995 (2024).

301. Selective electrified propylene-to-propylene glycol oxidation on activated Rh-doped Pd
Huang, J. E., Chen, Y., Ou, P., Ding, X., Yan, Y., Dorakhan, R., Lum, Y., Li, X.-Y., Bai, Y., Wu, C., Fan, M., Lee, M. G., Miao, R. K., Liu, Y., O’Brien, C., Zhang, J., Tian, C., Liang, Y., Xu, Y., Luo, M., Sinton, D., Sargent, E. H., Journal of the American Chemical Society 146, 12, 8641-8649 (2024).

300. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis
Chen, Y., Li, X.-Y., Chen, Z., Ozden, A., Huang, J. E., Ou, P., Dong, J., Zhang, J., Tian, C., Lee, B.-H., Wang, X., Liu, S., Qu, Q., Wang, S., Xu, Y., Miao, R. K., Zhao, Y., Liu, Y., Qiu, C., Abed, J., Liu, H., Shin, H., Wang, D., Li, Y., Sinton, D., Sargent, E. H., Nature Nanotechnology 19, 3, 311-318 (2024).

299. In situ copper faceting enables efficient CO2/CO electrolysis
Yao, K., Li, J., Ozden, A., Wang, H., Sun, N., Liu, P., Zhong, W., Zhou, W., Zhou, J., Wang, X., Liu, H., Liu, Y., Chen, S., Hu, Y., Wang, Z., Sinton, D., Liang, H., Nature Communications 15, 1, 1749 (2024).

298. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate
Wang, X., Chen, Y., Li, F., Miao, R. K., Huang, J. E., Zhao, Z., Li, X.-Y., Dorakhan, R., Chu, S., Wu, J., Zheng, S., Ni, W., Kim, D., Park, S., Liang, Y., Ozden, A., Ou, P., Hou, Y., Sinton, D., Sargent, E. H., Nature Communications 15, 1, 616 (2024).

297. Catalyst design for electrochemical CO2 reduction to ethylene
Chen, Y., Miao, R. K., Yu, C., Sinton, D., Xie, K., Sargent, E. H., Matter 7, 1, 25-37 (2024).

296. Efficient CO and acrolein co-production via paired electrolysis
Wang, X., Li, P., Tam, J., Howe, J. Y., O’Brien, C. P., Sedighian Rasouli, A., Miao, R. K., Liu, Y., Ozden, A., Xie, K., Wu, J., Sinton, D., Sargent, E. H., Nature Sustainability 7, 931–937 (2024).

295. Scalability and stability in CO2 reduction via tomography-guided system design
O’Brien, C. P., McLaughlin, D., Böhm, T., Xiao, Y. C., Edwards, J. P., Gabardo, C. M., Bierling, M., Wicks, J., Sedighian Rasouli, A., Abed, J., Young, D., Dinh, C.-T., Sargent, E. H., Thiele, S., Sinton, D., Joule 8, 10, 2903–2919 (2024).

294. Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design
Papangelakis, P., Miao, R. K., Lu, R., Liu, H., Wang, X., Ozden, A., Liu, S., Sun, N., O’Brien, C. P., Hu, Y., Shakouri, M., Xiao, Q., Li, M., Khatir, B., Huang, J. E., Wang, Y., Xiao, Y. C., Li, F., Zeraati, A. S., Zhang, Q., Liu, P., Golovin, K., Howe, J. Y., Liang, H., Wang, Z., Li, J., Sargent, E. H., Sinton, D., Nature Energy 9, 8, 1011–1020 (2024).

293. Efficient ethylene electrosynthesis through C-O cleavage promoted by water dissociation
Liang, Y., Li, F., Miao, R. K., Hu, S., Ni, W., Zhang, S., Liu, Y., Bai, Y., Wan, H., Ou, P., Li, X.-Y., Wang, N., Park, S., Li, F., Zeng, J., Sinton, D., Sargent, E. H., Nature Synthesis 3, 1104–1112 (2024).